A $$T(1)$$ -Theorem for non-integral operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bilinear T(b) Theorem for Singular Integral Operators

In this work, we present a bilinear Tb theorem for singular integral operators of Calderón-Zygmund type. We prove some new accretive type Littlewood-Paley results and construct a bilinear paraproduct for a para-accretive function setting. As an application of our bilinear Tb theorem, we prove product Lebesgue space bounds for bilinear Riesz transforms defined on Lipschitz curves.

متن کامل

Some concavity properties for general integral operators

Let $C_0(alpha)$ denote the class of concave univalent functions defined in the open unit disk $mathbb{D}$. Each function $f in C_{0}(alpha)$ maps the unit disk $mathbb{D}$ onto the complement of an unbounded convex set. In this paper, we study the mapping properties of this class under integral operators.

متن کامل

some concavity properties for general integral operators

let $c_0(alpha)$ denote the class of concave univalent functions defined in the open unit disk $mathbb{d}$. each function $f in c_{0}(alpha)$ maps the unit disk $mathbb{d}$ onto the complement of an unbounded convex set. in this paper, we study the mapping properties of this class under integral operators.

متن کامل

Local inverse estimates for non-local boundary integral operators

We prove local inverse-type estimates for the four non-local boundary integral operators associated with the Laplace operator on a bounded Lipschitz domain Ω in R for d ≥ 2 with piecewise smooth boundary. For piecewise polynomial ansatz spaces and d ∈ {2, 3}, the inverse estimates are explicit in both the local mesh width and the approximation order. An application to efficiency estimates in a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2013

ISSN: 0025-5831,1432-1807

DOI: 10.1007/s00208-013-0901-x